Photo/electro-conversion of CO2 into fuels and value chemicals


29-07-2025

The University of New Caledonia is hosting a public conference in English on Wednesday 30th of July at 6pm in the Sigma Building Auditorium (“amphi 80”) by our colleague and visiting professor from AGH Univesrity

Nanomaterials have unique chemical and catalytic properties that make them ideal for research in artificial photosynthesis, especially for CO2 conversion. Their distinctive structures and electronic traits allow them to act as catalysts, light harvesters, or scaffolds in electrochemical, photochemical, and photoelectrochemical processes aimed at reducing CO2 into valuable fuels and chemicals.

 

Artificial photosynthesis mimics natural photosynthesis but targets the solar-driven conversion of CO2 into carbon-rich products like methane, methanol, or hydrocarbons for energy and industrial use. A key challenge is forming carbon-carbon (C-C) bonds to create multi-carbon compounds. Nanomaterials, particularly copper-based catalysts, can lower energy barriers for C-C bond formation, improving efficiency and selectivity.

 

Their role as light harvesters also enables direct use of sunlight to power CO2 reduction. As scaffolds, nanomaterials help stabilize intermediates and steer reactions toward desired outcomes.

 

Abstract of the conference

Nanomaterials possess extraordinary chemical and catalytic properties, making them ideal candidates for fundamental research, particularly in the emerging field of artificial photosynthesis. These materials are characterized by their unique geometric structures and electronic properties, which allow for a wide range of applications and innovations. The talk summarizes the extensive research efforts focused on the use of various nanomaterials in artificial photosynthesis, specifically in the processes related to carbon dioxide (CO2) conversion. The application of nanomaterials in this area is multifaceted, as they can function as catalysts, light harvesters, or as scaffolds that support the integration of various functional molecules. These roles are crucial in electrochemical, photochemical, and photoelectrochemical processes aimed at reducing CO2 to produce valuable chemicals and fuels. Artificial photosynthesis represents a revolutionary approach to harnessing solar energy, with the goal of converting CO2—a major greenhouse gas—into useful and sustainable products. This process mimics the natural photosynthesis that occurs in plants, where sunlight drives the transformation of CO2 and water into glucose and oxygen. In artificial photosynthesis, however, the target is often the reduction of CO2 into carbon-rich compounds such as carbon monoxide, methane, methanol, or even more complex hydrocarbons, which can serve as fuels, as feedstocks for chemical industry or values chemicals for other applications One of the key challenges and opportunities in this field is the formation of carbon-carbon (C-C) bonds during the CO2 reduction process. The formation of C-C bonds is a critical step in synthesizing multi-carbon molecules, which are of particular interest because they form the basis for many fuels and valuable chemicals. Nanomaterials, with their high surface area, tunable electronic properties, and potential for precise control over active sites, are particularly well-suited for facilitating these complex reactions. For instance, certain copper-based nanostructured catalysts can lower the energy barriers associated with C-C bond formation, thereby enhancing the efficiency and selectivity of the reduction process. Moreover, the ability of nanomaterials to act as light harvesters in photochemical and photoelectrochemical systems allows for the direct utilization of solar energy to drive these CO2 conversion reactions. By absorbing sunlight and generating excited electrons, these materials can provide the necessary energy to initiate and sustain the reduction of CO2, while also potentially enabling the formation of C-C bonds. This capability is further enhanced when nanomaterials are used as scaffolds, where they can stabilize reactive intermediates and guide the reaction pathways towards the desired products.

 

 

About our Keynote speaker:

 

Pr. Kondrad Szaciłowski

AGH University of Krakow (École des mines et de la métallurgie de Cracovie)

 

He graduated from the Faculty of Chemistry, Jagiellonian University (Kraków, Poland) in 1995 (M.Sc.) and 2000 (Ph.D.). After habilitation

(2008) he has moved from Jagiellonian University to AGH University of Science and Technology. Now he is a group leader at the Academic Center of Materials and Nanotechnology. His initial interest in photochemistry and spectroscopy of coordination compounds has gradually evolved towards molecular and nanoscale logic devices and finally towards unconventional computing. At the moment his main research interests encompass the design of inorganic materials for memristive applications, mimicking of neutral and synaptic processes in inanimate systems, reservoir computing and relations of musical harmony with other fields of science. He is an author of the book « Infochemistry:

Information processing at nanoscale » (Wiley 2012) and numerous papers in fields of coordination chemistry, material science, spectroscopy, catalysis, and electrochemistry. In his free time he enjoys classical music, philately and single malts from Islay and Speyside.

 

 

>>>

 

Version française résumée

 

Conférence publique

Photo/électro-conversion du CO2 en carburants et produits chimiques à valeur ajoutée

L’Université de la Nouvelle-Calédonie organise une conférence publique en anglais le mercredi 30 juillet 2025 en amphi 80 du bâtiment Sigma, animée par notre collègue et professeur invité Kondrad Szaciłowski de l’Université AGH de Cracovie .

Les nanomatériaux possèdent des propriétés chimiques et catalytiques uniques qui les rendent idéaux pour la recherche dans le domaine de la photosynthèse artificielle, en particulier pour la conversion du CO2. Leurs structures et leurs caractéristiques électroniques distinctives leur permettent d’agir comme catalyseurs, collecteurs de lumière ou échafaudages dans les processus électrochimiques, photochimiques et photoélectrochimiques visant à réduire le CO2 en combustibles et produits chimiques de valeur.

 

La photosynthèse artificielle imite la photosynthèse naturelle, mais vise la conversion solaire du CO2 en produits riches en carbone tels que le méthane, le méthanol ou les hydrocarbures à des fins énergétiques et industrielles. L’un des principaux défis consiste à former des liaisons carbone-carbone (C-C) afin de créer des composés multi-carbone. Les nanomatériaux, en particulier les catalyseurs à base de cuivre, peuvent réduire les barrières énergétiques à la formation de liaisons C-C, améliorant ainsi l’efficacité et la sélectivité.

 

Leur rôle de collecteurs de lumière permet également d’utiliser directement la lumière solaire pour alimenter la réduction du CO2. En tant que structures de support, les nanomatériaux contribuent à stabiliser les intermédiaires et à orienter les réactions vers les résultats souhaités.

 

 

À propos de notre conférencier :

 

Pr. Kondrad Szaciłowski

Université AGH de Cracovie (École des mines et de la métallurgie de Cracovie)

 

Il est diplômé de la Faculté de chimie de l’Université Jagellonne (Cracovie, Pologne) en 1995 (maîtrise) et en 2000 (doctorat). Après son habilitation

(2008), il a quitté l’université Jagellonne pour rejoindre l’université des sciences et technologies AGH. Il est aujourd’hui chef de groupe au Centre universitaire des matériaux et des nanotechnologies. Son intérêt initial pour la photochimie et la spectroscopie des composés de coordination s’est progressivement orienté vers les dispositifs logiques moléculaires et nanométriques, puis vers l’informatique non conventionnelle. Actuellement, ses principaux domaines de recherche sont la conception de matériaux inorganiques pour des applications memristives, l’imitation de processus neutres et synaptiques dans des systèmes inanimés, le calcul par réservoir et les relations entre l’harmonie musicale et d’autres domaines scientifiques. Il est l’auteur du livre « Infochemistry:

Information processing at nanoscale » (Wiley 2012) et de nombreux articles dans les domaines de la chimie de coordination, de la science des matériaux, de la spectroscopie, de la catalyse et de l’électrochimie. Pendant son temps libre, il aime la musique classique, la philatélie et les single malts d’Islay et du Speyside.